Sumitomo Drive Technologies Redutores de Velocidade Para TORRE DE RESFRIAMENTO Paramax ® SFC Series Hansen P4/M4 Alto Desempenho **Produtos Inovadores** Qualidade e Confiança Excelência em Engenharia Rede de Assistência Técnica Global Sumitomo Indústrias Pesadas do Brasil Ltda

Sumitomo Drive Technologies

Redutores Sumitomo Para Torres de Resfriamento

Paramax® SFC Series, Hansen P4/M4.

Nossos Redutores

A Sumitomo possui redutores customizados para as necessidades específicas em torre de resfriamento

A distância aumentada entre os rolamentos no eixo de saída foi padronizada para atender as particularidades desta aplicação, aumentando a estabilidade dinâmica do redutor

Os rolamentos do eixo de saída são selecionados para suportar as cargas vindas do ventilador no eixo de saída. O sistema de lubrificação é adaptado para baixas rotações e para a condição de "WindMilling". Nossos redutores são projetados de acordo com as especificações do Instituto de Torre de Resfriamento

Sistema de Resfriamento Úmido

Para as Torres de Resfriamentos, com as linhas Paramax® SFC Series e Hansen P4, oferecemos um range de 17 tamanhos de redutores de até 100 kNm, o que nos permite uma seleção mais precisa

Nossos redutores são bem protegidos para operarem em ambientes muito umidos. A distância aumentada entre o ventilador e o eixo de entrada reduz as vibrações

Sistema de Resfriamento Seco

Com base na tecnologia P4 e M4, um redutor dedicado foi desenvolvido aplicando um alto padrão de qualidade, a linha M4 ACC. Esta linha oferece uma solução de custo-benefício com otimizada geometria do engrenamento para um baixo nível de ruído

O projeto monobloco da linha M4, garante uma alta rigidez para a carcaça. Como padrão, estes redutores vem com flange para motor que permite a conexão do motor em cima do redutor

Esta linha de produto é mais utilizada em plantas para ambientes secos onde o recurso de água é limitado

Critério de Seleção

Nossos redutores foram especialmente projetados para aplicação de torre de resfriamento, nós entendemos as condições de operação, tais como:

- Baixo índice de manutenção
- 100% humidade
- Altas forças externas que são difíceis de especificar
- Ambientes corrosivos (ex: água do mar)
- Alta solicitação de confiabilidade
- Baixa tolerância na variação de velocidade do ventilador da torre
- Baixo nível de ruído
- Wind Milling (Efeito de rotação do ventilador da torre no sentido contrário ao de funcionamento quando o motor elétrico está desligado)

Seguimos as orientações do Instituto de Torre de Resfriamento, conforme dados abaixo:

Cálculo do Engrenamen	to: Conforme AGMA 6010 - F97
Fator de Serviço	
Engrenagens Cônicas:	SF = 2.0 ou mais sobre a potência motora
Engrenagens helicoidais:	SF = 2.0 ou mais

Vida Útil do Rolamento

Eixo de entrada e intermediário: \geq 50.000 horas

Eixo de saída: \geq 100.000 horas

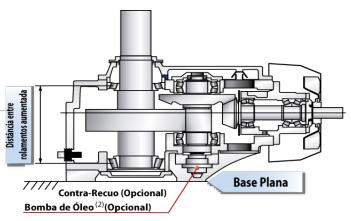
Características

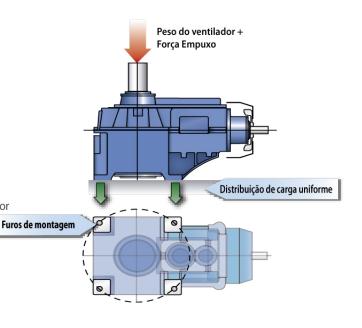
Baixa Vibração

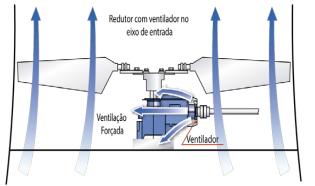
- Distância de Rolamentos Aumentada

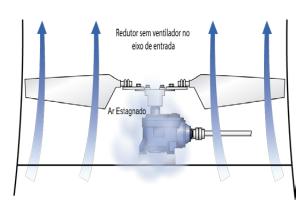
Mesmo que as pás do ventilador estejam balanceadas, excesso de vibração poderão ocorrer durante a operação. Este arranjo diminui significativamente o batimento no eixo de saída durante a operação.

- Distribuição de Carga Balanceada nos Pés do Redutor


Em função do arranjo simétrico de fixação do redutor à base, as cargas são transmitidas uniformemente.


Base Plana (1)

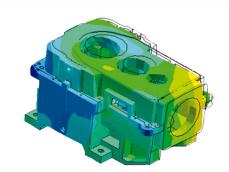

- Nossos redutores são projetados sem protuberâncias debaixo da base do redutor, facilitando o projeto da base e montagem em campo do redutor. Este projeto leva em consideração os opcionais como contra-recuo e bomba de lubrificação


Eficiência Térmica

Devido a localização do redutor dentro da torre, um mínimo fluxo de ar vindo do ventilador da torre de resfriamento o alcança. Nossos redutores são projetados para a máxima dissipação de calor, com aréa de superfície máximizada e ventiladores de alta eficiência

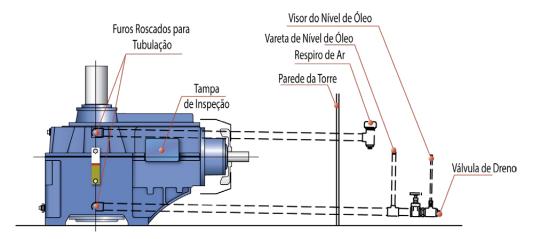
Fluxo de ar perto do redutor

(2) Acima do tamanho C, na linha P4, a bomba mecânica é padrão em todos os redutores


Sumitomo Drive Technologies

Características

Baixo Nível de Ruído


Deformação minimizada sob carga utilizando análise FEM

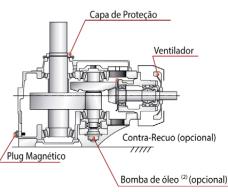
- Ressonância minimizada
- Excelente contato do engrenamento aumentado pela rigidez da carcaça

Fácil Manutenção

- Livre de manutenção por 01 ano
- Redutor preparado com furos roscados que facilitam a instalação de tubulação para enchimento e drenagem de óleo externamente a torre
- Possibilidade de inspeção interna do redutor sem a drenagem de óleo, devido a tampa de inspeção se localizar acima do nível de óleo
- Não é necessária a substituição períodica da bomba de óleo (quando utilizada)

Acessórios Disponíveis

Em nossos redutores para torres de resfriamento, alguns acessórios já são standard e mandatórios, outros são opcionais:


Padrão

Ventilador Integral Visor de Nível de Óleo Plug Magnético Pintura Epoxy a Prova de Umidade Respiro a prova de umidade

Opcional

Contra-Recuo
Resistência de Aquecimento
Bomba de Óleo
Fluxostato
Sensor de Nível de Óleo
Preparação para sensor de vibração
Pintura Especial (Ex: Água do Mar)
Entre outros, sob consulta

Por que Sumitomo Redutores?

Nós Temos o Melhor Redutor Para Sua Torre de Resfriamento!

- Nós possuímos redutores dedicados a aplicação, e oferecemos a prova de confiabilidade nas condições de operação mais severas
- Engrenagens cônicas e helicoidais cementadas e retificadas se destacam em força, capacidade de transmissão de torque, resistência ao desgaste e baixo nível de ruído
- Altas capacidades de carga no eixo de saída
- Dedicado arranjo dos rolamentos para Torre de Resfriamento
- Eixos e rolamentos são dimensionados para garantir longa vida útil do rolamento sobre altas cargas
- Circulação continua de óleo nos rolamentos garantem uma longa vida útil ao redutor
- Sistema de vedação no eixo de saída, previne contaminação por água ou vapor dentro do redutor
- O design interno do redutor permite um simples e completa drenagem de óleo
- O posicionamento dos furos roscados de dreno, óleo, enchimento de óleo e respiro de ar, facilitam a instalação das tubulações no lado externo da torre
- Tampas de inspeção pode ser removidas sem necessidade de drenagem do óleo
- Suporte de engenharia e documentação
- Assistência Técnica à nível global

Sumitomo Drive Technologies

1. Condições Gerais

	No. Itens	Especificação Requerida								
Motor / Dados de	1 Tipo de Motor									
Entrada	2 Potência do Motor	kW								
	3 Potência Máxima de Partida	kW								
	4 Potência Consumida	kW								
	5 Rotação do Motor - Entrada (Mín - Máx)	Mín rpm Máx rpm								
Redutor / Dados de	6 Rotação do Redutor - Saída (Mín - Máx)	Mín rpm Máx rpm								
Saída	7 Tempo de Operação (horas por dia)	≤3								
	8 Pico de Torque Acima de 200% sobre o Torque Absorvido	%								
	9 Número de Partidas / Paradas em 10 horas									
	10 Fator de Serviço Requerido (Mínimo ≥ 2)									
	11 Força de Empuxo (Empuxo do Ventilador + Força Peso)	kNm								
	12 Sentido de Rotação no Eixo de Saída (Olhando Para o Eixo)	Horário								
		Anti-Horário								
	13 Torque Máximo	kNm								
	14 Arranjo do Eixos	Paralelo (//) Angular (止)								

Folha de Dados da Aplicação

Notas Gerais

2. Ambiente de Instalação

	No. Itens	Especificação Requerida
Temperatura	15 Temperatura ambiente ao redor do redutor Perto do Redutor Deservo de uma distância de 500 mm ao redor da superficie da carreça do redutor	Mínima Máxima Teste °C Partida °C Operação °C
	16 Temperatura ambiente externa à torre	°C
	17 Temperatura da água refrigerada	°C
Ambiente	18 País (área/região)	
	19 Condições locais (marítimo, interno, externo ou outros)	
	20 Gases Corrosivos (ex: sulfeto de hidrogênio, etc.)	Sim (Favor Especificar) Não

3. Estrutura da Torre de Resfriamento

	No. Itens	Especificação Requerida
Pás do Ventilador	21 Método de fixação das pás do ventilador (Rígido ou Flexíve	el)
	22 κ φΑ	øA mm
	ØB ØB	ØB mm (Revisão detalhada é requerida, quando o efeito de guarda-sol não pode ser separado)
Estrutura	23 Material da estrutura da torre de resfriamento (ex: concreto aço, madeira,FRP)	e, Estrutura:
		Estrutura da Base do Redutor:
	24 Estrutura (base) de apoio para o redutor? (Sim ou Não)	

Arranjo da Apricação

4. Tipo de Planta (Atividade Industrial) Onde Será Instalada a Torre de Resfriamento

	No.	Itens	Especificação Requerida
Tipo de Planta	25 Ex: Geração de ener açúcar e álcool, pap	gia (ex: termoelétrica), siderurgia, química, petroquímica, el e celulose.	

5. Acessórios

	No.	Itens	Especificação Requerida
Acessórios	26 Ex: Contra recuo in preparação ára sen	terno, chave de nível de óleo, sensor de temperatura, sor de vibração, pintura especial.	

SFC

P4

P4

	xos ulares		Faixa de Aplicação de Paramax® SFC e Hansen P4 @ 1750 rpm com SF ≥ 2																			
	710						G	G	G	G	Н											
	630					G	G	G	G	Н	Н											
	560	1					G	G	G	G	G	Н	Н									
	500							G	G	G	G	G	Н	Н								
	400	1					F	F	F	F	FX	FX	FX	G	Н	Н						
_	370						Е	F	EX	F	F	FX	F	G								
(kW)	330							Е	Е	EX	EX	F	F / 075	FX	G	G	Н	Н				
×	300							Е	Е	EX	EX	F	F / 075	FX / 075	G	G	Н	Н				
Motora	260							Е	Е	Е	Е	EX / 070	EX / 075	F / 075	FX	FX	Н	Н				
₽ £	220						D	D	D	E / 060	E / 065	E / 065	55 E / 070 E)		FX / 075	FX / 075	Н	Н				
€	185					D	D	D	D / 060	E / 060	E / 065	E / 065	E / 065	EX / 070	EX / 070	FX	FX					
	150				С	С	D / 055	D / 055	D / 055	D / 060	E / 060	E / 065	E / 065	EX / 070	EX	FX						
<u> </u>	132					С	С	C / 055	D / 055	D / 055	D / 055	D / 055	055 E/060 E/065 E/065			EX	EX					
Potência	110	В	В	В	В	В	С	C / 045	C / 045	C / 055	C / 055	D / 055	D / 055	D/055 E/055 E/060								
5	90	В	В	В	В	В	В	B / 045	C / 045	C / 045	C / 045	C / 055	C / 055	D / 055	D / 055	D / 055						
ш.	75	В	В	В	В	В	В	B / 045	B / 045	B / 045	B / 045	C / 045	C / 045	C / 055	D / 055	D / 055						
	55	Α	Α	Α	Α	Α	Α	Α	В	В	В	B / 045	C / 045	С								
	45	Z	Z	Z	Z	Z	Α	Α	Α	Α	Α	В	В									
	37						Z	Z	Α	Α	Α	Α	В									
	30	1						Z	Z	Z	Α	Α	Α									
	22	1									Z	Z	Α									
Redução	Nominal	3,55	4	4,5	5	5,6	6,3	7,1	8	9	10	11,2	12,5	14	16	18	20	22,4	25			
	ão do dor [rpm]	495	440	390	350	315	280	245	220	195	175	155	140	125	110	97	88	78	70			

P4

SFC

M4

M4

	ixos alelos	Faixa de Aplicação: Paramax® S										SF	C, H	ans	sen F	P4 /	M4 (@ '	1750	rp	m co	m	SF ≥	2				
	710																											
	630						-			0.5																		
	560						F	_		C/F																		
	500						F	F	_	FA	-	C/F		C/F		0.15												
	400						E	F	F	EX	F	FA				C/F												
5	370	ļ					E	F	F	EX	F		F / 075		075	FA		C/F										
(kW)	330	ļ					E	E	E	EA	F				F / 075		075	FA		C/F								
	300	ļ					E	E	E	EA	F	EA	F / 070		F / 075	_	F / 075	FA	075	FA		C/F						
Motora	260	ļ					D	E	E	DX	E	EA	E / 065		F / 070			_	F / 075			FA		C/F		0.15		
ŧ	220	ļ					D	D	E	DA	Е				E / 065				F / 070			_	F / 075		075	C/F		
	185	ļ					D	D	D	DA	D		E / 060		E / 065		E / 065		E / 070				_		F / 075			E)/
<u>.a</u>	150	ļ					С	С	С		D	DA	D	DA											F / 070		F / 070	EX
2	132	ļ					С	С	С		D		D		D / 060	DA	D / 060	DA	E / 060		E / 060		E / 065		E / 065		F/070	EX
Potência	110							С	С		С		С		D		D			DA			E / 060		E / 065		E / 065	EX
&	90										С		С		С		С		D			DA					E / 060	DX
	75														С		С		С		С		D	DA	D / 060	DA	D / 060	DX
	55																		С		С		С		С		D	
	45																						С		С		С	
	37																											
	30																											
	22																									_		
Reduçã	o Nominal	3,55	4	4,5	5	5,6	6,3	7,1	8	9)		10		11,2		12,5		14		16		18		20		22,4	25
	ıção do ıdor [rpm]	495	440	390	350	315	280	245	220	19	5		175		155		140		125		110		97		88		78	70

Redutores para Torre de Resfriamento Sumitomo

www.sumitomodrive.com

Soluções Completas e Poderosas para Torre de Resfriamento

Devido às severas exigências em redutores para torre de resfriamento, a Sumitomo Drive Technologies oferece produtos dedicados à aplicação com o maior desempenho do mercado de acordo com as condições de operação. Levando em consideração estas condições de operação, vários acessórios são incluídos como standard. A Sumitomo projeta, cria e oferece produtos que podem ser adaptados a solicitações específicas. Desta forma criamos uma ampla e flexível linha de produtos dedicados ao mercado internacional de torre de resfriamento. Prova da confiabilidade dos produtos, é o certificado de qualidade ISO 9001, demonstrando excelente qualidade, apoiado por uma rede internacional de centro de serviços. Utilizando componentes standard, oferecemos produtos dedicados as necessidades específicas das aplicações da indústria.

Assistência Técnica

A Sumitomo através de seu portfólio e tecnologia, busca tornar-se lider no fornecimento de produtos para transmissão de potência e serviços, oferecendo aos seus clientes, atendimento único, suporte às vendas, serviços e engenharia local para todas as marcas.

Antes

Depois

Fábrica no Brasil

Localizada em Itu em uma área de 447.000m², sendo 20.000 m² de área fabril, a Sumitomo está capacitada para produzir redutores industriais, de médio e grande porte da consagrada linha Paramax® 9000. Equipamentos de última geração garantem a fabricação de engrenagens cônicas (cementadas e retificadas), tratamento térmico e usinagem de carcaças, além de uma equipe de profissionais treinados e motivados, garantindo assim, o padrão de excelência e qualidade que a Sumitomo conquistou nas últimas décadas ao redor do mundo.

www.sumitomodrive.com

Tel. Fax (55) 11-4403-9292 - Vendas e Suporte Técnico